Abstract

A window device that can provide noise insulation while maintaining natural ventilation is highly desirable and is especially sought after in heavily noise-polluted and hot-humid climates cities, such as Southeast Asian cities. However, a solution to provide such a window is non-trivial because the design principles guiding acoustics and ventilation are diametrically opposed. While louvre windows have traditionally been used in communal, healthcare, and some educational setting to provide a balance between acoustics and ventilation benefits, it is still sorely lacking to provide sufficient insertion loss without sacrificing ventilation entirely. A new plenum window design has recently garnered research and market interest to tackle the dichotomous problem. Additionally, the application of active noise control (ANC) in windows is gaining popularity and offers potential solutions to improve noise control without compromising ventilation. However, it remains unclear how different traditional and modern window designs compare in terms of their acoustic performance, especially when exposed to non-stationary noise sources such as urban traffic, a major noise pollutant. Thus, the present study seeks to provide a generalization of insertion loss provided by different window designs exposed to moving sources including a tangent study on ANC implementation via a time-domain approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.