Abstract

In this paper, we deal with two classes of Diophantine equations, $x^2+y^2+z^2+k_3xy+k_1yz+k_2zx=(3+k_1+k_2+k_3)xyz$ and $x^2+y^4+z^4+2xy^2+ky^2z^2+2xz^2=(7+k)xy^2z^2$, where $k_1,k_2,k_3,k$ are nonnegative integers. The former is known as the Markov Diophantine equation if $k_1=k_2=k_3=0$, and the latter is a Diophantine equation recently studied by Lampe if $k=0$. We give algorithms to enumerate all positive integer solutions to these equations, and discuss the structures of the generalized cluster algebras behind them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.