Abstract

Scattering of electromagnetic radiation by electrically charged spherical particles is treated theoretically. A generalization of the approach is performed by incorporating both intraband and interband effects, while a new oscillatory term corresponding to the classical dispersion theory and the semi-quantum approach is considered. It is shown through a set of numerical experiments that interband effects may reduce the amplitude of resonant peaks for scattering, Q(sca), and absorption, Q(abs), and cause a shift of peak positions to longer wavelengths. In general, the resonant features due to interband and intraband effects can occur at different frequencies; thus, both together may result in qualitatively and quantitatively new optical signatures of electrically charged particles. This is a motivating factor for experimentalists who can use the particles as targeted probes, for example, in mapping the electric fields in different media based on scattering and/or absorption properties of electrified particulate systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call