Abstract

Scattering of electromagnetic radiation by electrically charged spherical particles is treated theoretically. A generalization of the approach is performed by incorporating both intraband and interband effects, while a new oscillatory term corresponding to the classical dispersion theory and the semi-quantum approach is considered. It is shown through a set of numerical experiments that interband effects may reduce the amplitude of resonant peaks for scattering, Q(sca), and absorption, Q(abs), and cause a shift of peak positions to longer wavelengths. In general, the resonant features due to interband and intraband effects can occur at different frequencies; thus, both together may result in qualitatively and quantitatively new optical signatures of electrically charged particles. This is a motivating factor for experimentalists who can use the particles as targeted probes, for example, in mapping the electric fields in different media based on scattering and/or absorption properties of electrified particulate systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.