Abstract

This paper presents a new direct adaptive control (DAC) technique using Caputo’s definition of the fractional-order derivative. This is the first time a fractional-order adaptive law is introduced to work together with an integer-order stable manifold for approximating the uncertainty of a class of nonlinear systems. The DAC approach uses universal function approximators such as multi-layer perceptrons with one hidden layer or fuzzy systems to approximate the controller. This paper presents a new lemma, which elucidates and clarifies the link between the Caputo and the Riemann–Liouville definitions. The introduced lemma is useful in developing a Lyapunov candidate to prove the stability of using the proposed fractional-order adaptive law. This is further explained by a numerical example, which is provided to elucidate the practicality of using the fractional-order derivative for updating the approximator parameters. The main novelty of the results in this paper is a rigorous stability proof of the fractional DAC approach for a class of nonlinear systems that is subjected to unstructured uncertainty and deals with the adaptation mechanism using a traditional integer-order stable manifold. This makes the control scheme easier to implement in practice. The fractional-order adaptation law provides greater degrees of freedom and a potentially larger functional control structure than the conventional adaptive control. Finally, the paper demonstrates that traditional integer-order DAC is a special case of the more general fractional-order DAC scheme introduced here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call