Abstract
Several representations for the logarithm of the Gamma function exist in the literature. There are four important expansions which bear the name of Binet. Hermite generalized Binet's first formula to the logarithm of the Gamma function with shifted argument. The generalization of Binet's second formula is apparently not known; however, it follows easily from another result of Hermite. The aim of this paper is to give possible generalizations of the third and fourth Binet formulas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.