Abstract
Fermionic Gaussian states have garnered considerable attention due to their intriguing properties, most notably Wick’s theorem. Expanding upon the work of Balian and Brezin, who generalized properties of fermionic Gaussian operators and states, we further extend their findings to incorporate Gaussian operators with a linear component. Leveraging a technique introduced by Colpa, we streamline the analysis and present a comprehensive extension of the Balian–Brezin decomposition to encompass exponentials involving linear terms. Furthermore, we introduce Gaussian states featuring a linear part and derive corresponding overlap formulas. Additionally, we generalize Wick’s theorem to encompass scenarios involving linear terms, facilitating the expression of generic expectation values in relation to one and two-point correlation functions. We also provide a brief commentary on the applicability of the BB decomposition in addressing the BCH (Zassenhaus) formulas within the so(N) Lie algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.