Abstract
AbstractRecent research on evolutionary algorithms has begun to focus on the issue of generalization. While most works emphasize the evolution of high quality solutions for particular problem instances, others are addressing the issue of evolving solutions that can generalize in different scenarios, which is also the focus of the present paper. In particular, this paper compares fitness-based search, Novelty Search (NS), and random search in a set of generalization oriented experiments in a maze navigation problem using Grammatical Evolution (GE), a variant of Genetic Programming. Experimental results suggest that NS outperforms the other search methods in terms of evolving general navigation behaviors that are able to cope with different initial conditions within a static deceptive maze.KeywordsNovelty SearchGrammatical EvolutionGenetic Programming
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.