Abstract

In this work, the probability of an event under some joint distribution is bounded by measuring it with the product of the marginals instead (which is typically easier to analyze) together with a measure of the dependence between the two random variables. These results find applications in adaptive data analysis, where multiple dependencies are introduced and in learning theory, where they can be employed to bound the generalization error of a learning algorithm. Bounds are given in terms of Sibson's Mutual Information, α-Divergences, Hellinger Divergences, and f-Divergences. A case of particular interest is the Maximal Leakage (or Sibson's Mutual Information of order infinity), since this measure is robust to post-processing and composes adaptively. The corresponding bound can be seen as a generalization of classical bounds, such as Hoeffding's and McDiarmid's inequalities, to the case of dependent random variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.