Abstract

Aim: Deep learning's widespread use prompts heightened scrutiny, particularly in the biomedical fields, with a specific focus on model generalizability. This study delves into the influence of training data characteristics on the generalization performance of models, specifically in cardiac abnormality detection. Materials & methods: Leveraging diverse electrocardiogram datasets, models are trained on subsets with varying characteristics and subsequently compared for performance. Additionally, the introduction of the attention mechanism aims to improve generalizability. Results: Experiments reveal that using a balanced dataset, just 1% of a large dataset, leads to equal performance in generalization tasks, notably in detecting cardiology abnormalities. Conclusion: This balanced training data notably enhances model generalizability, while the integration of the attention mechanism further refines the model's ability to generalize effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.