Abstract

In this paper, the problem of learning the functional dependency between input and output variables from scattered data using fractional polynomial models (FPM) is investigated. The estimation error bounds are obtained by calculating the pseudo-dimension of FPM, which is shown to be equal to that of sparse polynomial models (SPM). A linear decay of the approximation error is obtained for a class of target functions which are dense in the space of continuous functions. We derive a structural risk analogous to the Schwartz Criterion and demonstrate theoretically that the model minimizing this structural risk can achieve a favorable balance between estimation and approximation errors. An empirical model selection comparison is also performed to justify the usage of this structural risk in selecting the optimal complexity index from the data. We show that the construction of FPM can be efficiently addressed by the variable projection method. Furthermore, our empirical study implies that FPM could attain better generalization performance when compared with SPM and cubic splines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.