Abstract
ObjectivesDevelopment of automated segmentation models enabling standardized volumetric quantification of fibroglandular tissue (FGT) from native volumes and background parenchymal enhancement (BPE) from subtraction volumes of dynamic contrast-enhanced breast MRI. Subsequent assessment of the developed models in the context of FGT and BPE Breast Imaging Reporting and Data System (BI-RADS)-compliant classification.MethodsFor the training and validation of attention U-Net models, data coming from a single 3.0-T scanner was used. For testing, additional data from 1.5-T scanner and data acquired in a different institution with a 3.0-T scanner was utilized. The developed models were used to quantify the amount of FGT and BPE in 80 DCE-MRI examinations, and a correlation between these volumetric measures and the classes assigned by radiologists was performed.ResultsTo assess the model performance using application-relevant metrics, the correlation between the volumes of breast, FGT, and BPE calculated from ground truth masks and predicted masks was checked. Pearson correlation coefficients ranging from 0.963 ± 0.004 to 0.999 ± 0.001 were achieved. The Spearman correlation coefficient for the quantitative and qualitative assessment, i.e., classification by radiologist, of FGT amounted to 0.70 (p < 0.0001), whereas BPE amounted to 0.37 (p = 0.0006).ConclusionsGeneralizable algorithms for FGT and BPE segmentation were developed and tested. Our results suggest that when assessing FGT, it is sufficient to use volumetric measures alone. However, for the evaluation of BPE, additional models considering voxels’ intensity distribution and morphology are required.Critical relevance statementA standardized assessment of FGT density can rely on volumetric measures, whereas in the case of BPE, the volumetric measures constitute, along with voxels’ intensity distribution and morphology, an important factor.Key points• Our work contributes to the standardization of FGT and BPE assessment.• Attention U-Net can reliably segment intricately shaped FGT and BPE structures.• The developed models were robust to domain shift.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.