Abstract

We explore the generalization properties of an echo state network applied as a reduced-order model to predict flux-driven two-dimensional turbulent convection. To this end, we consider a convection domain with constant height with a variable ratio of buoyancy fluxes at the top and bottom boundaries, which break the top-down symmetry in comparison to the standard Rayleigh-Bénard case, thus leading to highly asymmetric mean and fluctuation profiles across the layer. Our direct numerical simulation model describes a convective boundary layer in a simple way. The data are used to train and test a recurrent neural network in the form of an echo state network. The input of the echo state network is obtained in two different ways, either by a proper orthogonal decomposition or by a convolutional autoencoder. In both cases, the echo state network reproduces the turbulence dynamics and the statistical properties of the buoyancy flux, and is able to model unseen data records with different flux ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call