Abstract
Mental illness has recently become a global health issue, causing significant suffering in people’s lives and having a negative impact on productivity. In this study, we analyzed the generalization capacity of machine learning to classify various mental illnesses across multiple social media platforms (Twitter and Reddit). Language samples were gathered from Reddit and Twitter postings in discussion forums devoted to various forms of mental illness (anxiety, autism, schizophrenia, depression, bipolar disorder, and BPD). Following this process, information from 606,208 posts (Reddit) created by a total of 248,537 people and from 23,102,773 tweets was used for the analysis. We initially trained and tested machine learning models (CNN and Word2vec) using labeled Twitter datasets, and then we utilized the dataset from Reddit to assess the effectiveness of our trained models and vice versa. According to the experimental findings, the suggested method successfully classified mental illness in social media texts even when training datasets did not include keywords or when unrelated datasets were utilized for testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.