Abstract

The shape of performance curves and their plasticity define how individuals and populations respond to environmental variability. In theory, maximum performance decreases with an increase in performance breadth. However, reversible acclimation may counteract this generalist–specialist trade-off, because performance optima track environmental conditions so that there is no benefit of generalist phenotypes. We tested this hypothesis by acclimating individual mosquitofish (Gambusia holbrooki) to cool and warm temperatures consecutively and measuring performance curves of swimming performance after each acclimation treatment. Individuals from the same population differed significantly in performance maxima, performance breadth and the capacity for acclimation. As predicted, acclimation resulted in a shift of the temperature at which maximal performance occurred. Within acclimation treatments, there was a significant generalist–specialist trade-off in responses to acute temperature change. Surprisingly, however, there was also a trade-off across acclimation treatments, and animals with greater capacity for cold acclimation had lower performance maxima under warm conditions. Hence, cold acclimation may be viewed as a generalist strategy that extends performance breadth at the colder seasons, but comes at the cost of reduced performance at the warmer time of year. Acclimation therefore does not counteract a generalist–specialist trade-off and, at least in mosquitofish, the trade-off seems to be a system property that persists despite phenotypic plasticity.

Highlights

  • Persistence of populations in variable environments depends on how well individuals can withstand changing abiotic conditions [1,2]

  • Acclimation capacity acclimation capacity performance breadth conditions are characterized by performance curves that describe changes in a physiological rate with an acute change in an environmental condition, such as temperature [1,3]

  • Acclimation to 28◦C resulted in a greater sustained swimming performance across all (a) 15 males 20°C acclimated (b) males 28°C acclimated

Read more

Summary

Introduction

Persistence of populations in variable environments depends on how well individuals can withstand changing abiotic conditions [1,2]. Acclimation capacity acclimation capacity performance breadth conditions are characterized by performance curves that describe changes in a physiological rate with an acute change in an environmental condition, such as temperature [1,3]. Performance curves typically have a maximum (or mode) that occurs over a narrow range of conditions, with performance decreasing at higher and lower values of the environmental variable [1,3,4]. Performance breadth may be defined as the range of environmental values over which performance is greater than a given proportion of maximum (e.g. greater than 80 or 90% of maximum [1,3,5,6])

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.