Abstract

In diesem Beitrag wird ein Machine-Learning-Modell auf Basis eines Autoencoders trainiert. Das Ziel des Modells ist es, Fehlschnitte beim Laserschneiden zu erkennen, da fehlerhafte Schnitte zu hohen Ausschussraten führen. Die Literatur zeigt, dass es möglich ist, mit Machine Learning Fehler beim Laserschneiden zu erkennen. Eine noch nicht vollständig gelöste Problemstellung ist die Anwendung eines Modells auf verschiedene Prozessparameter. In diesem Beitrag wird ein Ansatz vorgestellt, wie sich ein trainiertes Modell auf verschiedenen Blechdicken anwenden lässt. Zu diesem Zweck wird der Autoencoder mit einer erweiterten Verlustfunktion trainiert. Das Modell ist dann in der Lage, einen Fehlschnitt generalisiert über mehrere Blechdicken zu erkennen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.