Abstract

The Notch Stress Intensity Factors (NSIFs) quantify the intensities of the asymptotic linear elastic stress distributions of sharp (zero radius) V-shaped notches. When the notch tip radius is different from zero, the singular sharp-notch field diverges from the rounded-notch solution in the close neighborhood of the notch tip. Nevertheless the NSIFs might continue to be parameters governing fracture if the notch root radius is small enough. Otherwise they can be seen simply as stress field parameters useful in quantifying the stress distributions ahead of the specific notch. Taking advantage of some analytical formulations which are able to describe stress distributions ahead of parabolic, hyperbolic and V-shaped notches with end holes, the paper discusses the form and the significance of the NSIFs with reference to in-plane shear loading, considering explicitly the role played by the notch opening angle and the notch tip radius. These parameters quantify the stress redistribution due to the root radius with respect to the sharp notch case to which they should naturally tend for decreasing values of the notch radius.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call