Abstract

Generalised stacking fault energies of copper alloys have been calculated using density functional theory. Stacking fault energy of copper alloys is correlated with the d?electrons number of transition metal alloying element. The tendency to twiningis also modified by the presence of alloying element in the deformation plane. The results suggest that Cu ?transition metal alloys with such elements as Cr, Mo, W, Mn, Re are expected to exhibit great work hardening rate due to the tendency to emission of the partial dislocations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.