Abstract
This study presents a generalised representation of voltage source converter (VSC) based high voltage direct current (HVDC) systems appropriate for power flow studies using the Newton–Raphson method. To reach this aim, the active loads and ideal synchronous machines are employed in order to incorporate both converter losses and power balance, respectively. Also, considering different aspects of computer implementation, the proposed solution method uses the conventional Newton–Raphson method. The proposed representation considers practical restrictions, switching and conduction losses of semiconductors, and different control strategies for VSC-HVDC stations. Moreover, the proposed generalised representation of VSC-HVDC systems can be easily extended to incorporate the multi-terminal VSC-HVDC grids in an efficient manner. To investigate the application of the proposed representation for VSC-HVDC systems and load flow solution, three test systems including the standard IEEE 30 bus and IEEE two area RTS-96 networks are used and discussion on results is provided. Results show that the proposed algorithm is able to solve AC–DC power flow problems very efficiently with considerably less time in comparison to other existing algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.