Abstract
Abstract This article focuses on the motion planning and control of an automated differential-driven two-wheeled E-puck robot using Generalized Regression Neural Network (GRNN) architecture in the Virtual Robot Experimentation Platform (V-REP) software platform among scattered obstacles. The main advantage of this GRNN over the feedforward neural network is that it provides accurate results in a short period with minimal error. First, the designed GRNN architecture receives real-time obstacle information from the Infra-Red (IR) sensors of an E-puck robot. According to IR sensor data interpretation, this architecture sends the left and right wheel velocities command to the E-puck robot in the V-REP software platform. In the present study, the GRNN architecture includes the MIMO system, i.e., multiple inputs (IR sensors data) and multiple outputs (left and right wheel velocities). The three-dimensional (3D) motion and orientation results of the GRNN architecture-controlled E-puck robot are carried out in the V-REP software platform among scattered and wall-type obstacles. Further on, compared with the feedforward neural network, the proposed GRNN architecture obtains better navigation path length with minimum error results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.