Abstract

We make use of the ionisation energy theory, Ramachandran interaction theory and the energy-level spacing renormalisation group technique to extend the Drude Hamiltonian to derive the Ramachandran pairing mechanism. This particular mechanism is exploited to explain the notorious discontinuous jumps in the specific heat data at critical points in both He-4 and He-3 superfluids. The well-known spin states (due to Balian–Werthamer and Anderson–Brinkman–Morel theories) and the Leggett’s spontaneously broken spin-orbit symmetry are shown to enhance Ramachandran attraction between two He-3 atoms without the need to invoke the spin-induced pairing or the phonon-mediated Cooper pairing mechanism in superconductors. In addition, we shall show physically that the spin-exchange mechanism can neither cause pairing between electrons nor between He-3 atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call