Abstract
A class of normal ordering representations of quantum operators is introduced, that generalises the Glauber-Sudarshan P-representation by using nondiagonal coherent state projection operators. These are shown to have practical application to the solution of quantum mechanical master equations. Different representations have different domains of integration, on a complex extension of the usual canonical phase-space. The 'complex P-representation' is the case in which analytic P-functions are defined and normalised on contours in the complex plane. In this case, exact steady-state solutions can often be obtained, even when this is not possible using the Glauber-Sudarshan P-representation. The 'positive P-representation' is the case in which the domain is the whole complex phase-space. In this case the P-function may always be chosen positive, and any Fokker-Planck equation arising can be chosen to have a positive-semidefinite diffusion array. Thus the 'positive P-representation' is a genuine probability distribution. The new representations are especially useful in cases of nonclassical statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.