Abstract

In uplink orthogonal frequency division multiple access (OFDMA) systems with carrier frequency offsets (CFOs), there always be a dilemma that high performance and low complexity cannot be obtained simultaneously. In this study, in order to achieve better trade-off between performance and complexity, the authors propose a grouped minimum mean squared error (G-MMSE)-based multi-stage interference cancellation (MIC) scheme. The first stage of the proposed scheme is a G-MMSE detector, where the signal is detected group by group using banks of partial MMSE filters. The signal group can be either user based or subcarrier based. Multiple novel interference cancellation (IC) units are serially concatenated with the G-MMSE detector. Reusing the filters in the G-MMSE detector significantly reduces the computational complexity in the subsequent IC units as shown by the complexity analysis. The performance of the proposed G-MMSE-MIC schemes are evaluated by theoretical analysis and simulation. The results show that the proposed schemes outperform other existing schemes with considerably low complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call