Abstract

This study presents a generalised fault diagnosis method for power transistors in the asymmetric half-bridge power converter of switched reluctance motor (SRM) drive. In order to extract the remarkable fault features, three current sensors are rearranged. Each phase current can be calculated by solving the equations associated with the detected values of three current sensors and three coefficients obtained based on different switching states. Different faults are preliminarily detected by monitoring the error between the estimated bus current and the actual bus current. After the identification of fault occurrence, the error will be calculated with all the combinations of three coefficients. The minimum error will be found and the corresponding coefficients are recorded. The fault types and fault power transistors are located by comparing the actual coefficients with the recorded coefficients. Being different from the existing methods, the developed diagnostic strategy can detect multiple fault types and can be used in different control modes, including voltage pulse width modulation, current chopping control and angular position control schemes. Moreover, the proposed technique is easy for online implementation without extra sensors and additional electric devices. The effectiveness of the proposed solution is validated on a three-phase 12/8 SRM drive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.