Abstract

Shapiro and Chekhov (2011) have introduced the notion of <i>generalised cluster algebra</i>; we focus on an example in type $C_n$. On the other hand, Chari and Pressley (1997), as well as Frenkel and Mukhin (2002), have studied the <i>restricted integral form</i> $U^{\mathtt{res}}_ε (\widehat{\mathfrak{g}})$ of a quantum affine algebra $U_q(\widehat{\mathfrak{g}})$ where $q=ε$ is a root of unity. Our main result states that the Grothendieck ring of a tensor subcategory $C_{ε^\mathbb{z}}$ of representations of $U^{\mathtt{res}}_ε (L\mathfrak{sl}_2)$ is a generalised cluster algebra of type $C_{l−1}$, where $l$ is the order of $ε^2$. We also state a conjecture for $U^{\mathtt{res}}_ε (L\mathfrak{sl}_3)$, and sketch a proof for $l=2$. Shapiro et Chekhov (2011) ont introduit la notion d'<i>algèbre amassée généralisée</i>; nous étudions un exemple en type $C_n$. Par ailleurs, Chari et Pressley (1997), ainsi que Frenkel et Mukhin (2002), ont étudié la <i>forme entière restreinte</i> $U^{\mathtt{res}}_ε (\widehat{\mathfrak{g}})$ d'une algèbre affine quantique $U_q(\widehat{\mathfrak{g}})$ où $q=ε$ est une racine de l'unité. Notre résultat principal affirme que l'anneau de Grothendieck d'une sous-catégorie tensorielle $C_{ε^\mathbb{z}}$ de représentations de $U^{\mathtt{res}}_ε (L\mathfrak{sl}_2)$ est une algèbre amassée généralisée de type $C_{l−1}$, où $l$ est l'ordre de $ε^2$. Nous conjecturons une propriété similaire pour $U^{\mathtt{res}}_ε (L\mathfrak{sl}_3)$ et donnons un aperçu de la preuve pour $l=2$.

Highlights

  • Cluster algebras have been introduced in 2001 by Fomin and Zelevinski [7]

  • We are interested in generalised cluster algebras, introduced by Shapiro and Chekhov in 2011 [4], which differ from standard cluster algebras by the form of their exchange relations

  • We exhibit some interesting bases of a generalised cluster algebra An of Cartan type Cn, which will be relevant in representation theory

Read more

Summary

Introduction

Cluster algebras have been introduced in 2001 by Fomin and Zelevinski [7]. These rings have special generators, called cluster variables. In the spirit of Hernandez and Leclerc’s papers [11, 12], we consider a certain tensor category CεZ of the category of finite-dimensional representations of Uε(Lg), and prove that when g = sl, the Grothendieck ring of CεZ is isomorphic to Al−1 (see Theorem 4.2), where l is the order of ε2. This isomorphism maps the basis of classes of simple objects of CεZ to the basis of (generalised) cluster monomials, multiplied by Tchebychev polynomials in the single generator of the coefficient ring.

Background
A generalised cluster algebra of type Cn
Quantum loop algebras and ε-characters
Type A2

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.