Abstract

Previous research dealing with constrained kinematic redundancy problems focuses on manipulators with time-independent constraints. This paper extends the general-weighted least-norm (GWLN) method to manipulators with time-dependent constraints by introducing time-dependent virtual joints. In the virtual joint space, corresponding task space velocity is revised to encapsulate the effects of time-dependent parameters of constraints. This is done so that an intermediate kinematic control problem with only joint limit is obtained. Then, the inverse kinematic problem is solved in the virtual joint space. A new inverse-weighted matrix setting criterion is proposed to replace the one-step prediction that originally complicated implementation of the GWLN method. To demonstrate the efficacy of the method, simulations and experiments are carried out on a five-link welding manipulator to track the welding trajectory. Time-dependent orientation constraint and preventing joint limits is guaranteed using this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.