Abstract
The $$2+1$$ -dimensional Sawada–Kotera equation is an important physical model. Here, by taking a long limit and restricting a conjugation condition to the related solitons, the general M-lump, high-order breather and localized interaction hybrid solutions are constructed, correspondingly. In order to study the dynamical behaviors, numerical simulations are implemented, which show that the parameters selected have great impacts on the types, dynamical behaviors and propagation properties of the solutions. The method proposed can be effectively applied to construct M-lumps, high-order breathers and interaction solutions of many nonlinear equations. The results obtained can be used to study the propagation phenomena of other nonlinear localized waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.