Abstract
The main purpose of this paper is to introduce a new general-type proximal point algorithm for finding a common element of the set of solutions of monotone inclusion problem, the set of minimizers of a convex function, and the set of solutions of fixed point problem with composite operators: the composition of quasi-nonexpansive and firmly nonexpansive mappings in real Hilbert spaces. We prove that the sequence xn which is generated by the proposed iterative algorithm converges strongly to a common element of the three sets above without commuting assumption on the mappings. Finally, applications of our theorems to find a common solution of some nonlinear problems, namely, composite minimization problems, convex optimization problems, and fixed point problems, are given to validate our new findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.