Abstract

We consider a very general class of fractional calculus operators, given by transmuting the classical fractional calculus along an arbitrary invertible linear operator S. Specific cases of S, such as shift, reflection, and composition operators, give rise to well-known settings such as that of fractional calculus with respect to functions, and allow simple connections between left-sided and right-sided fractional calculus with different constants of differintegration. We define, for the first time, general transmuted versions of the Laplace transform and convolution of functions, and discuss how these ideas can be used to solve fractional differential equations in more general settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.