Abstract
Summary We propose a physically motivated formulation for the matrix/fracture transfer function in dual-porosity and dual-permeability reservoir simulation. The approach currently applied in commercial simulators (Barenblatt et al. 1960; Kazemi et al. 1976) uses a Darcy-like flux from matrix to fracture, assuming a quasisteady state between the two domains that does not correctly represent the average transfer rate in a dynamic displacement. On the basis of 1D analyses in the literature, we find expressions for the transfer rate accounting for both displacement and fluid expansion at early and late times. The resultant transfer function is a sum of two terms: a saturation-dependent term representing displacement and a pressure-dependent term to model fluid expansion. The transfer function is validated through comparison with 1D and 2D fine-grid simulations and is compared to predictions using the traditional Kazemi et al. (1976) formulation. Our method captures the dynamics of expansion and displacement more accurately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.