Abstract

A general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. The scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids are derived and shown to depend on the initial perturbation amplitude (ŵ0), the characteristic rate of current sheet evolution (1/τ), and the Lundquist number (S). They are not simple power laws, and are proportional to Sατβ[ln f(S,τ,ŵ0)]σ. The detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.