Abstract
As a fundamental concept of all crystals, space groups are partitioned into symmorphic groups and nonsymmorphic groups. Each nonsymmorphic group contains glide reflections or screw rotations with fractional lattice translations, which are absent in symmorphic groups. Although nonsymmorphic groups ubiquitously exist on real-space lattices, on the reciprocal lattices in momentum space, the ordinary theory only allows symmorphic groups. In this work, we develop a novel theory for momentum-space nonsymmorphic space groups ($k$-NSGs), utilizing the projective representations of space groups. The theory is quite general: Given any $k$-NSGs in any dimensions, it can identify the real-space symmorphic space groups ($r$-SSGs) and construct the corresponding projective representation of the $r$-SSG that leads to the $k$-NSG. To demonstrate the broad applicability of our theory, we show these projective representations and therefore all $k$-NSGs can be realized by gauge fluxes over real-space lattices. Our work fundamentally extends the framework of crystal symmetry, and therefore can accordingly extend any theory based on crystal symmetry, for instance, the classification crystalline topological phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.