Abstract

AbstractAccording to a general theory of domain decomposition methods (DDM), recently proposed by Herrera, DDM may be classified into two broad categories: direct and indirect (or Trefftz‐Herrera methods). This article is devoted to formulate systematically indirect methods and apply them to differential equations in several dimensions. They have interest since they subsume some of the best‐known formulations of domain decomposition methods, such as those based on the application of Steklov‐Poincaré operators. Trefftz‐Herrera approach is based on a special kind of Green's formulas applicable to discontinuous functions, and one of their essential features is the use of weighting functions which yield information, about the sought solution, at the internal boundary of the domain decomposition exclusively. A special class of Sobolev spaces is introduced in which boundary value problems with prescribed jumps at the internal boundary are formulated. Green's formulas applicable in such Sobolev spaces, which contain discontinuous functions, are established and from them the general framework for indirect methods is derived. Guidelines for the construction of the special kind of test functions are then supplied and, as an illustration, the method is applied to elliptic problems in several dimensions. A nonstandard method of collocation is derived in this manner, which possesses significant advantages over more standard procedures. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 296–322, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.