Abstract

Well-crystallized and high-performance xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, and 0.7) structurally integrated nanomaterials are prepared by a facile molten-salt strategy. The effects of heat-treatment temperature, time, and the molar ratio of KCl flux to reaction precursor on the particle size as well as the electrochemical properties are explored. Our results demonstrate that a 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 electrode delivers a high reversible capacity of 313 mA h g−1 with significant enhancement in the initial coulombic efficiency (87%) at room temperature, exhibits superior rate capability and shows improved electrochemical properties over a wide temperature range, in particular at low temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.