Abstract

Rational nanostructure design has proved fruitful in addressing the bottlenecks of diverse fields. Especially hollow multi-shelled structures (HoMS) have stood out due to their temporal-spatial ordering mass transfer and buffering effect. Localizing multiple cores in a HoMS is highly desired, which could endow it with more fascinating properties. However, such a structure has been barely reported due to the highly challenging fabrication. Here, we develop a controllable synthesis strategy to realize such a structure, which is applicable for diverse cores and shells. Additionally, cores and shells could be tuned to be homogeneous or heterogeneous, with the core and shell number well controlled. In situ TEM analysis verifies that the inner shell confines the expansion orientation of cores, while the outer shell maintains a stable interface. In addition to energy storage, such structure is also promising for multi-drug co-delivery and sequential responsive release as well as tandem catalysis applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.