Abstract
Constructing hierarchical porosity and designing rational hybrid composition are effective strategies for enhancing the electrocatalytic performance of hybrid catalysts for electrochemical energy conversion. Here, we develop a multistep "molecule/ion-exchange" strategy toward the synthesis of hierarchically macro/mesoporous Fe,Ni-doped CoSe/N-doped carbon nanoshells with tunable pore structures and compositions. Polystyrene (PS)@Co-based amorphous coordination polymer (Co-CP) core-shell particles with hierarchically macro/mesoporous nanoshells are first prepared by ligand-molecule-exchange etching of the outer layers in PS@Co-based metal-organic framework precursors. Afterward, a liquid-solid dual-ion-exchange reaction of PS@Co-CP particles with [Fe(CN)6]3- and [Ni(CN)4]2- ions leads to the formation of PS@Co-CP/Co-Fe Prussian blue analogue (PBA)/Co-Ni PBA particles, which are further transformed into hierarchically macro/mesoporous Fe,Ni-doped CoSe/N-doped carbon particles via a vapor-solid selenization reaction. Moreover, this approach could be extended to synthesize different hierarchically porous core-shell composites with various morphologies and tailored compositions. Because of their unique hierarchically porous nanoarchitecture, these Fe,Ni-doped CoSe/N-doped carbon particles with optimized composition show enhanced performance for electrocatalytic oxygen evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.