Abstract

A simple approach is proposed to synthesize nanostructured Li4Ti5O12 spinel materials with different morphologies (nanorods, hollow spheres and nanoparticles), in which the TiO2 precursor is first coated with a conductive carbon layer by the chemical vapour decomposition (CVD) method, followed by a solid-state reaction with lithium salt. The Li4Ti5O12 obtained was characterised by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as galvanostatic measurements. The results indicate that, by employing the carbon pre-coating process, the carbon-coated nanostructured Li4Ti5O12 can maintain the initial morphologies of the TiO2 precursors and also show significant improvement in the rate capability for lithium-ion intercalation due to both good electronic conductivity and the short lithium-ion diffusion path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.