Abstract

Two-dimensional (2D) transition metal dihalides (TMDHs) have been receiving extensive attention due to their diversified magnetic properties and promising applications in spintronics. However, controlled growth of 2D TMDHs remains challenging owing to their extreme sensitivity to atmospheric moisture. Herein, using a home-built nitrogen-filled interconnected glovebox system, a universal chemical vapor deposition synthesis route of high-quality 2D TMDH flakes (1T-FeCl2, FeBr2, VCl2, and VBr2) by reduction of their trihalide counterparts is developed. Representatively, ultrathin (∼8.6 nm) FeCl2 flakes are synthesized on SiO2/Si, while on graphene/Cu foil the thickness can be down to monolayer (1L). Reflective magnetic circular dichroism spectroscopy shows an interlayer antiferromagnetic ordering of FeCl2 with a Neel temperature at ∼17 K. Scanning tunneling microscopy and spectroscopy further identify the atomic-scale structures and band features of 1L and bilayer FeCl2 on graphene/Cu foil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.