Abstract
We investigated the coalescence of ultrathin carbon nanotubes (UTCNTs) using the tight-binding molecular dynamics simulation technique. We have found that two UTCNTs having the same or different chirality can coalesce without initially introducing atomic defects to enhance the reaction. The chiral index of the coalesced nanotube was found to be given as a vector sum of the indices of the original nanotubes, which can be explained geometrically in terms of the developments of the nanotubes. The results clearly show that the chirality can be changed through chemical reaction, which might suggest a possibility of chirality control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.