Abstract

Approximately 380 million tons of plastic are produced annually, and it is projected to rise to nearly 1.1 billion by 2050 [1]. The largest fraction of such waste consists of polyethylene (PE) and polypropylene (PP), which commonly require energy-intensive methods to achieve depolymerization (such as pyrolysis and hydrogenolysis) due to their remarkable thermodynamic stability. Electrochemical methods are a promising alternative for polymer upcycling as they can utilize renewable energy to create an external potential, overcoming the thermodynamic constraints that the C-C bond cleavage endothermicity imposes on low-temperature polymer conversion. They also offer improved chemical process control by manipulating the electrode potential and minimizing the use and storage of hazardous reagents. Electrochemistry provides a broad range of opportunities for establishing green routes to converting plastic into valuable products.Botte's group is investigating electrochemical approaches to convert polyolefins into valuable products like fuels and fatty acids [2]. Our findings indicate that an electrocatalyst in concert with controlled ionic strength and applied potential enable the selective functionalization of polyolefins and their defragmentation towards target molecules regardless of impurities present in the polymer. In this presentation, we will discuss results of the electrochemical functionalization and deconstruction of low-density polyethylene implementing transition metal electrocatalysts. Acknowledgments: The authors would like to acknowledge the financial support of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Upcycling of Polymers Program, under Award DE-SC0022307[1] J. E. Rorrer, C. Troyano-Valls, G. T. Beckham, and Y. Román-Leshkov, "Hydrogenolysis of Polypropylene and Mixed Polyolefin Plastic Waste over Ru/C to Produce Liquid Alkanes," ACS Sustainable Chemistry & Engineering, vol. 9, no. 35, pp. 11661-11666, 2021/09/06 2021, doi: 10.1021/acssuschemeng.1c03786.[2] G. G. Botte, "Process for the Electrochemical Up-Cycling of Plastics (US Pending Patent)," U.S. Patent 63040929, 2020.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call