Abstract

CC chemokine receptors (CCRs) form a crucial subfamily of G protein-linked receptors that play a distinct role in the onset and progression of various life-threatening diseases. The main aim of this research is to derive general structure-activity relationship (SAR) patterns to describe the selectivity and activity of CCR inhibitors. To this end, a total of 7332 molecules related to the inhibition of CCR1, CCR2, CCR4, and CCR5 were collected from the Binding Database and analyzed using machine learning techniques. A diverse set of 450 molecular descriptors was calculated for each molecule, and the molecules were classified based on their therapeutic targets and activities. The variable importance in the projection (VIP) approach was used to select discriminatory molecular features, and classification models were developed using supervised Kohonen networks (SKN) and counter-propagation artificial neural networks (CPANN). The reliability and predictability of the models were estimated using 10-fold cross-validation, an external validation set, and an applicability domain approach. We were able to identify different sets of molecular descriptors for discriminating between active and inactive molecules and model the selectivity of inhibitors towards different CCRs. The sensitivities of the predictions for the external test set for the SKN models ranged from 0.827–0.873. Finally, the developed classification models were used to screen approximately 2 million random molecules from the PubChem database, with average values for areas under the receiver operating characteristic curves ranging from 0.78–0.96 for SKN models and 0.75–0.89 for CPANN models. Communicated by Ramaswamy H. Sarma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.