Abstract

Well dispersible and stable single atom catalysts (SACs) with hydrophilic features are highly desirable for selective hydrogenation reactions in hydrophilic solvents towards important chemicals and pharmaceutical intermediates. A general strategy is reported for the fabrication of hydrophilic SACs by cation‐exchange approach. The cation‐exchange between metal ions (M = Ni, Fe, Co, Cu) and Na+ ions introduced in the skeleton of metal oxide (TiO2 or ZrO2) nanoshells plays the key role in forming M1/TiO2 and M1/ZrO2 SACs, which efficiently prevents the aggregation of the exchanged metal ions. The as‐obtained SACs are highly dispersible and stable in hydrophilic solvents including alcohol and water, which greatly facilitates the catalysis reaction in alcohol. The Ni1/TiO2 SACs have been successfully utilized as catalysts for the selective C=C hydrogenation of cinnamaldehyde to produce phenylpropanal with 98% conversion, over 90% selectivity, good recyclability, and a turnover frequency (TOF) of 102 h−1, overwhelming most reported catalysts including noble metal catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.