Abstract

This paper is devoted to the analysis methods/tools to stochastic convergence and stochastic adaptive output-feedback control. As the first contribution, a general stochastic convergence theorem is proposed for stochastic nonlinear systems. The theorem doesn't necessarily involve a positive-definite function of the system states with negative-semidefinite infinitesimal, essentially different from stochastic LaSalle's theorem (see e.g., [1] ), and hence can provide more opportunities to achieve stochastic convergence. Moreover, as a direct extension of the convergence theorem, a general version of stochastic Barb a lat's lemma is obtained, which requires the concerned stochastic process to be almost surely integrable, rather than absolutely integrable in the sense of expectation, unlike in [2] . As the second contribution, supported by the general stochastic convergence theorem, an adaptive output-feedback control strategy is established for the global stabilization of a class of stochastic nonlinear systems with severe parametric uncertainties coupled to unmeasurable states. Its feasibility analysis takes substantial effort, and is largely based on the general stochastic convergence theorem. Particularly, for the resulting closed-loop system, certain stochastic boundedness and integrability are shown by the celebrated nonnegative semimartingale convergence theorem, and furthermore, the desired stochastic convergence is achieved via the general stochastic convergence theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.