Abstract

A novel spontaneous ion replacement route based on the solubility difference as the driving force to synthesize a number of metal oxides has been established. We present a comprehensive study on the ion replacement reaction for chemical synthesis of micro- and nanostructured Mn2O3, ZnO, CuO, CdO, Al2O3, and CaO samples. This novel approach described herein is derived from the solubility difference between two carbonate salts, in which a metal cation can be driven from one liquid phase into another solid phase in the solution system. The resulting metal carbonate salts are initially formed and subsequently calcined to form highly crystallined metal oxides. The variation of pH values, reaction temperature, and reagent shapes can vary the solubility of these two carbonate salts, which thus changes the final morphology of metal oxides. The present work makes a progress to simply and mildly synthesize metal oxides with various morphologies, due to the fact that materials with a desired morphology are a key engineering step toward their shape-dependent chemical and physical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.