Abstract

Currently there is a lack of literature on SPICE-level models of double-gate (DG) tunnel field-effect transistors (TFETs). A DG TFET compact model is presented in this work that is used to develop a SPICE model for DG TFETs implemented with Verilog-A language. The compact modeling approach presented in this work integrates several issues in previously published compact models including ambiguity about the use of tunneling parameters Ak and Bk, and the use of a universal equation for calculating the surface potential of DG TFETs in all regimes of operation to deliver a general SPICE modeling procedure for DG TFETs. The SPICE model of DG TFET captures the drain current-gate voltage (Ids-Vgs) characteristics of DG TFET reasonably well and offers a definite computational advantage over TCAD. The general SPICE modeling procedure presented here could be used to develop SPICE models for any combination of structural parameters of DG TFETs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.