Abstract

Methods involving the use of mathematical models of competitive ligand-receptor binding to characterize mixtures of ligands in terms of compositions and properties of the component ligands have been developed. The associated mathematical equations explicitly relate component ligand physical-chemical properties and mole fractions to measurable properties of the mixture including steady state binding activity, 1/Kd,apparent or equivalently 1/EC50, and kinetic rate constants kon,apparent and koff,apparent allowing: (1) component ligand physical property determination and (2) mixture property predictions. Additionally, mathematical equations accounting for combinatorial considerations associated with ligand assembly are used to compute ligand mole fractions. The utility of the methods developed is demonstrated using published experimental ligand-receptor binding data obtained from mixtures of afucosylated antibodies that bind FcγRIIIa (CD16a) to: (1) extract component ligand physical property information that has hitherto evaded researchers, (2) predict experimental observations, and (3) provide explanations for unresolved experimental observations. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:500-510, 2017.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.