Abstract

AbstractBased on various matrix decompositions, we compare different techniques for solving the inverse quadratic eigenvalue problem, where n × n real symmetric matrices M, C and K are constructed so that the quadratic pencil Q(λ) = λ2M + λC + K yields good approximations for the given k eigenpairs. We discuss the case where M is positive definite for 1 ≤ k ≤ n, and a general solution to this problem for n + 1 ≤ k ≤ 2n. The efficiency of our methods is illustrated by some numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.