Abstract

When anisotropy is involved, the wave equation becomes simultaneous partial dierential equations that are not easily solved. Moreover, when the anisotropy occurs due to both permittivity and permeability, these equations are insolvable without a numerical or an approximate method. The problem is essentially due to the fact neither nor µ can be extracted from the curl term, when they are in it. The terms r ◊ E (or H) and r ◊ E (or µH) are practically independent variables, and E and H are coupled to each other. However, if Maxwell’s equations are manipulated in a dierent way, new wave equations are obtained. The obtained equations can be applied in anisotropic, as well as isotropic, cases. In addition, E and H are decoupled in the new equations, so the equations can be solved analytically by using tensor Green’s functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.