Abstract

The two-dimensional Ginzburg–Landau equation (GLE) is obtained from basic equations by a linear stability analysis. This equation governs the evolution of slowly varying envelopes of periodic spatio-temporal patterns related to Rayleigh–Bénard convective instabilities. In addition, the phase instabilities of the complex GLE (CGLE) with quintic and space-dependent cubic terms modelling the Eckhaus and zigzag convective instabilities are reported. We find soliton solution classes to the elliptic and hyperbolic CGLE, by applying the function transformation method. The two-dimensional CGLE is transformed to a sine-Gordon equation, a sinh-Gordon equation and other equations, which depend only on one function χ. The general solution of the equation in χ leads to a general soliton solution of the two-dimensional CGLE. The obtained solutions contain some interesting specific solutions such as plane solitons, N multiple solitons and propagating breathers. We also discuss the soliton stability of the CGLE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.