Abstract

A label-free and reagent-free peptide mimotope capacitive biosensor has been developed for cancer drug (trastuzumab) quantification based on nonfaradic readout. The low sensitivity issue of capacitive biosensors was overcome with two innovations: peptide mimotope mixed self-assembled monolayer (SAM) biointerface and dilution of the analysis buffer. Signal amplification was achieved through dilution of phosphate-buffered saline (PBS) to tune Cdl to dominate the overall capacitance change upon target binding, which contribution is often negligible without dilution. After 1000× dilution, the limit of detection was lowered 500-fold (0.22 μg/mL) and the sensitivity was increased 20-fold [0.04192 (μg/mL)-1] in comparison with undiluted PBS. The proposed signal amplification strategy is more straightforward and practical compared to biorecognition element engineering and other strategies. The proposed method was further applied to planar electrodes for optimizing sensing response time to less than 1 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.