Abstract

Carbon dot (C-dot) separation/purification is not only a fundamental chemical issue but also an essential precondition for revealing C-dots' true nature. To date, adequate separation of C-dots has remained an open question due to the lack of an appropriate fine separation system. Herein, we discover and reveal that polyamide chromatography can provide versatile and powerful performances for C-dot separation. By a joint study of experiments and all-atom molecular dynamics simulations, we demonstrate that multiple interaction forces, including electrostatic repulsion/attraction, hydrogen bond, and van der Waals effects, exist simultaneously among the stationary phase, mobile phase, and the separated C-dots. Furthermore, the magnitude of these forces is dependent on the surface chemistry of the separated C-dots and the nature of the used mobile phases, providing a theoretical basis and experimental operability for C-dot separation. So, the proposed system possesses the capacity for adequately separating hydrophilic, amphiphilic, and lipophilic C-dots. The polyamide chromatography, due to its versatile and powerful separation performances, not only provides more thorough separation effects but also helps to correct our false perceptions from inadequate purified C-dots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call